• ceshi6
  • ceshi6
  • ceshi6
  • ceshi6
  • ceshi6
更多>>联系我们

公司名称:郑州德优量子科技有限公司

公司地址:郑州市高新技术开发区腊梅路150号

服务热线:400 167 1413

业务微信:13140114291  高经理


最容易理解的量子理论

发布时间:2019/1/17 10:28:37

最容易理解的量子理论

你是否曾被量子物理里面那些稀奇***的思想搞得神经错乱?

首先,不要惊慌。神经错乱的不只你一个。正如具有传奇色彩的美国物理学家理查德﹒费曼所说:“我可以大胆地说,没有人懂量子理论。”

然而,要描述这个世界,量子理论又是确实不可少的。

在这篇文章中,我们将把量子理论的思想一一分解,让谁都能懂

1、什么是量子理论?

经过几千年的争论,我们现在终于知道了,物质追根究底是由像电子、夸克这样的微观粒子组成的。这些小家伙像乐高积木一样组合在一起,形成了原子和分子,而原子和分子又是拼成宏观世界的“乐高积木”。

为了描述微观世界是如何运作的,科学家发展出一套叫量子力学的理论。这个理论做出的预言虽然非常***(例如,粒子可以同时出现在两个地方),但它是目前物理学中最精确的理论,在过去近百年里经受住了严格的检验。没有量子理论,我们周围的许多技术,包括电脑和智能手机里的芯片,都是不可想象的。

量子理论很***,但它的正确性不容怀疑。科学家们所争论的,仅仅是如何解释它。

2、“量子”到底是啥意思?

假如妈妈吩咐你:“把这罐辣酱放到厨房储物柜里。”储物柜是分层的。你可以选择放在这一层或那一层,但你总不能把辣酱放在相邻两层之间,譬如2.5层吧。因为那是没有意义的。

用物理学上的术语说,你家的储物柜是“量子化”的,只能分成离散的一层,两层,三层……不可能再细分为0.6层,1.5层,2.8层,3.45层……

在量子的世界里,任何东西也都是量子化的。举例来说,原子中的电子只能呆在一些离散的能量层里(称为能级)。跟你家厨房的储物柜一样,两个相邻的能级之间,是没有它的立足之地的。

但是量子的行为十分诡异。假如你给待在较低层的电子一个能量,它就会跳到更高的层。这叫量子跃迁。不过,你给的能量必须合适才行,即刚好等于两层之间的能量差,否则它会“耍脾气”拒收。

设想你脚下有一个“量子***”,在你10米之外有一些由近及远的沟,它们相当于一条条能级。一般人会想,用的力太小,固然球飞不起来,但用的力很大,让球飞起来总没问题吧?但事实上不是。仅当你踢“量子***”的力不多不少刚好能让它掉到这条那条沟里的时候,它才会呼啸而起,否则任你怎么踢,它也会待在原地不动。很奇怪吧?

还有另外一个类比。假如你驾驶着一辆“量子汽车”,你只能以5千米/时、20千米/时或80千米/时的速度行驶,在它们之间的速度是不允许的。换挡的时候,你突然就从5千米/时跳到了20千米/时。速度的变化是瞬间发生的,你几乎觉察不到加速的过程。这可以叫速度的“量子化”。

3、量子力学VS经典力学

上述例子已经让你稍稍领略了量子世界的诡异。说实话,***我们熟悉的“经典”世界的规则在微观世界基本上都失效了。只有少数几个硕果仅存,像能量守恒、电荷守恒等等。

“经典”是物理学家用于描述“日常感觉”的术语——当事物的表现不超出你日常经验的范围,我们就说它是“经典”的。

台球就是一个经典物体。在碰到另一个球或桌沿之前,它总是在球桌上沿着一条直线滚动,这完全符合我们的日常经验。但球里每一个单独的原子的运动,却遵循着量子力学的规律,比如说,它随时都可以消失。

但这并不意味着,微观和宏观世界的规律完全“老死不相往来”。作为物理规律,量子规律无疑更基本,但是当很多粒子***在一起时,其整体行为就非常趋近于经典物体的行为了,这时你就可以用经典规律来描述。比如说,组成台球的一个粒子,或许非常“任性”,但是数以亿计的粒子聚在一起时,彼此的“任性”相互抵消,整体行为就越来越“中规中矩”。你要是有一台超级计算机,把组成台球的上亿个原子考虑进去,然后完全按照量子力学来计算,你会发现,这上亿个原子的整体运动跟直接用牛顿力学来描述是一样的。

这叫对应原理。就是说大量微观粒子***一起时,诡异的量子效应将会消失,其整体行为就会变得“经典”。这条原理在某些情况下很有用。比如一些大分子团,要说它是经典物体呢,似乎太小了;要说它是量子物体呢,似乎又太大了。这时候,我们就可以量子规律和经典规律双管齐下。本来只要用量子规律即可,但计算量太大了。既然存在对应原理,我们就可以把一部分计算简化成经典物体来处理。

4、海森堡不确定性原理

在量子物理学中,某些东西从严格意义上说是不可知的。例如,你永远不可能同时知道电子的位置和动量,正如你永远不可能让硬币的两个面都朝上。

有些书上教你这样去理解不确定性原理:例如,要想知道电子在哪里,你须得用某种东西(例如光子)探测它。但光是一种波,它的分辨率决定于它的波长,波长越短分辨率越高。所以为了把电子的位置测量得更准确,你***是选用波长越短的光。但光又是一种粒子,其能量与波长成反比,波长越短能量越高。光子能量越大,对电子的碰撞也越大。这样一来,不管你的探测多么小心,都会改变电子的动量。在经典世界,观察或测量对观察对象的干扰可以忽略不计,但在微观世界,干扰无论如何是不能忽略的。

这样说当然也没错。不过,不确定性原理事实上比上述这样的理解更深刻。它说的是,自然界有一种天生的模糊性。在测量之前,电子的状态(包括它的位置、动量),是各种可能状态的叠加。它处于一种叠加态。叠加态具有天然的“模棱两可性”:既可能是这样,又可能是那样,或者说几种可能性同时并存。仅当测量时,它才***选择一种确定的状态呈现出来。

好比一枚“量子硬币”,当它落下之前,它的状态是“正面朝上”和“背面朝上”两种状态的叠加。仅当它落到地面静止下来,它才***选择停留在两种状态中的一种。

5、波粒二象性

量子物体(如光子和电子)具有***的个性——有时它们的行为像波,有时又像粒子。它们的表现取决于你设计实验时,是以波还是粒子来看待它们。

例如,我们知道,粒子的运动是有轨迹的,而波的特点是在整个空间弥漫,没有确定的轨迹。当你把量子物体当作粒子看待(如用粒子探测器探测它),想知道它的运动轨迹,好,那它就表现得像个粒子。假如你在设计实验的时候,想看看它的波的特性,如干涉、衍射等,好,它就表现出波的特性。

在量子力学中有一个***的双狭缝实验。它之所以***,是因为展示了量子的许多奇怪特征。下面我们就以它为例子来谈谈。

假如你在一个水池里设置一个有两条竖直狭缝的屏障,然后用手指蘸一下水产生水波,水波会穿过两条狭缝。穿过两狭缝的水波会在屏障后面互相干涉,形成一个干涉图案。

如果你把屏障从水里拿出,朝狭缝发射一堆***,它们就会直接穿过这条或那条狭缝,在屏障后留下两条分明的弹痕,而不会产生干涉图案。

这是经典的波和粒子在双狭缝实验中的表现。但诡异的是,微观粒子譬如电子,可以同时表现出两者。

假如你朝狭缝发射电子,甚***像发射***一样控制好,一次发射一个,起初屏障后面开始形成两条明显的“弹痕”,说明电子表现得像粒子;但随着你发射的电子渐多,弹痕也渐渐模糊起来,***竟然在屏幕上显示出明暗相间的干涉图案,这时它又表现得像波了。倒好像每个电子同时穿过了两条狭缝,并与自身干涉。

按照不确定性原理,可以这样解释:因为电子是一个量子物体,我们不能确切地知道它的位置。电子有机会穿过一条狭缝,也有机会穿过另一条狭缝——因为两者都是可能的,所以它实际上同时经历了两个过程。换句话说,确实是每个电子同时穿过了两条狭缝,并与自身干涉。

现在,更诡异的事情来了。假如你在两狭缝边上各放置一个粒子探测器,来观察电子到底穿过了哪条狭缝。你的意图可以得逞,比如电子击中探测器的探头,不断发出明亮的闪烁,你高兴地欢呼:“你这个鬼家伙,终于被我逮着了!你刚才走的是这条缝,现在走的是那条缝。”但是,等你把头探到屏障后面,就会发现大事不妙:干涉图案竟然消失不见了,只留下像弹痕一样的两条直截分明的狭缝投影。

按前面的解释,这是因为你知道了电子穿过哪个狭缝之后,它不就再处于叠加态,所以只能选择一条路径,通过一条狭缝。电子的波动行为消失了,表现得完全像粒子。

如果你对上述解释还感到头疼,那么请想一想这个事实,或许多少受些安慰:物理学家其实也不太能接受这样的解释,他们一直都在为这个明显的悖论想破脑壳。

6、波函数:(这是一种用来描述波-粒子的数学)

***关重要的是,一个量子波函数可以包含有许多种可能的解,每一个解都对应着一种可能的现实,波函数则是这许多种可能的解按一定概率的叠加。譬如,一个“量子硬币”的波函数包含“正面朝上”和“背面朝上”两种解,每一种解都对应一种现实,实现的概率各为50%。

惊讶的是,叠加态中不同的解似乎还相互作用

分享到:
更多...

上一条:全球首颗量子卫星墨子号发射
下一条:一、什么是量子: